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Abstract. Optimal constraints on the values of a physical amplitude are derived when its 
imaginary part and an upper bound on the modulus are given along distinct regions of the 
boundary of the analyticity domain. The problem is formulated rigorously as a minimum 
norm problem in a space of analytic functions and solved by applying a duality theorem. An 
approximate description of the solution, suitahle for practical applications, is presented. 

1. Introduction 

In recent years the interpolation Schur-Carathkodory-Pick-Nevanlinna theory for 
analytic functions has been successfully applied to the investigation of various problems 
in particle theory (Nenciu 1973, Ciulli et a1 1975, Raszillier 1979, GuiaSu et a1 1980, 
Caprini and Dit5 1980). Usually in such problems one starts from the knowledge of the 
modulus of a physical amplitude on the boundary of the analyticity domain, using it for 
constraining the values of the amplitude or its derivative in interior points. In such an 
approach, i.e. when one constructs an analytic function starting from its modulus on the 
cut rather than its imaginary part, much weaker assumptions at infinity are needed, the 
main requirements now referring to the knowledge of the interior zeros. But the 
unknown factors containing the interior zeros, or more generally the inner function in 
the canonical factorisation (Duren 1970) of the analytic function investigated, can be 
optimally maximised. One obtains in this way an exact description of the domain 
allowed for the values of the function at any interior point, which results in rigorous 
bounds and correlations among coupling constants and other physical parameters of 
interest. However, analytic interpolation theory in its standard form, requiring the 
knowledge of the modulus along the whole boundary, is not suitable for some physical 
situations, when the imaginary (absorbtive) part of the amplitude is known accurately 
along a part of the boundary. In the present paper we shall formulate and solve a 
modified interpolation problem, suitable for these situations. In P 2, we formulate the 
problem and treat it by applying a duality theorem. In § 3 a convenient description of 
the solution, involving explicit analytic expressions, is presented. 

2. Formulation of the problem 

We consider the general case of a physical amplitude f ( v 2 )  as a function of the energy 
variable v 2 ,  and assume that f(v’)  is real analytic in the v 2  complex plane, cut along the 
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real axis for v 2  5 vi. The information available on f consists of its imaginary part along 
the region rl of the cut, i.e. 

77 LO, (2.1) 
2 2 Imf(v2+iT)=p(v2) ,  V0SY2SVu, 

and an upper bound on its modulus along the remaining part r2 of the boundary, i.e. 

The properties of the boundary values p(v2) and a ( v 2 )  will be specified below. The 
problem is to establish the constraining power of the input information expressed in the 
relations (2.1) and (2.2) upon the values of the function f or its derivatives at IZ points 
situated either inside the analyticity domain or in the region rl of the cut where the 
imaginary part is given. More precisely, given n points v',, k = 1, 2, , . . , IZ, which we 
assume for simplicity to be real and distinct, one has to find the optimal domain 9 c [w" 

of the values {f(vi)};=l, consistent with the conditions (2.1) and (2.2). The extension to 
complex points v', and the inclusion of the derivatives of f  is straightforward. 

In order to solve the problem it is convenient to perform first the conformal mapping 
2 2 1/2 a - ( v , - v )  

t =  2 2 1 /29  a + ( v , - v  ) (2.3) 

a being an arbitrary yositive parameter. By this transformation the v 2  plane is mapped 
onto the unit disc It I s 1, such that the part of the cut where v i  s v2 s v u  becomes the 
real segment [xo, 11, with xo = [ a  -(vu - vo) 1, while the upper and 
lower borders of the remaining part of the cut (v2 5 v u )  are mapped onto the upper and 
lower semicircles (2 = ele) respectively. Further, we denote by t k ,  k = 1, . . . , a, the 
images of the points v',, k = 1 , .  . . , n, through the transformation (2.3). 

The properties of the amplitude f in the new variable t can be easily established. 
From (2.1) it follows that f has a cut along the segment [xo, 11, with a given discontinuity 
across it, equal to the function p (x), which we assume here to be Lipschitz continuous 
(Duren 1970). This medns that f has inside Iz1 G 1 a known non-analytic part. In what 
follows we shall take into account this fact by splitting the function f into two terms, one 
of them being analytic in It I < 1 and the other having in It 1 < 1 a prescribed non-analytic 
part. Of course, this separation is not unique but, as we shall show below, the final result 
will not depend on this arbitrariness. For our purposes it is convenient to write f ( t )  as 

2 

2 2 1/2 2 1 / 2  
] / [ a  + ( v t  - vo) 

2 

In this relation E is an arbitrary positive number and p ( x )  for x > 1 is an arbitrary 
continuous extension of the function p ( x )  known for x s 1. By construction, the last 
term in (2.4) has inside the disc IzI < 1 a cut along the segment [xo, 11 with the same 
discontinuity asf. Accordingly the function g ( z )  will be real analytic in It 1 < 1, having in 
particular real values for xo s x s 1. 

We assume further that the boundary function a appearing in (2.1) is such that 
In a(@)  E L1[-v, v],  and define the outer function S ( z )  by (Duren 1970) 

S(z)=exp($/  li r l n u ( O ) d @ ) ,  e i Q + z  
v -,e - 2  

which is by construction real analytic and without zeros in / z / < l ,  having on the 
boundary ( z  = eie) the modulus equal to a(@).  Then (2.2) can be written in the 
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equivalent form 

If(e)/s(e)l 1, e E [ - ~ ,  .r]. 

By combining this relation with (2.4), we obtain the inequality 

which expresses in a compact form the conditions (2.1) and (2.2) of the problem. The 
function g = g/S appearing in equation (2.6) is analytic in JzI < 1, its values at the points 
z k  being related to f ( t k )  through 

if z k  is below the threshold xo and 

(2.7') 

if z k  is in the interval [xo,  11. The principal part appearing in front of the last integral 
exists, due to the assumed smoothness properties of p ( x ) .  By the above manipulations, 
the initial problem of finding the admissible values of f ( Z k )  was reduced to the 
equivalent problem of describing the optimal domain of values g"(zk), when the analytic 
function g is subject to the unique condition (2.6). By means of the relations (2.7) and 
(2.7'), this domain will then be expressed in terms of the values f ( Z k )  of interest. 

We start by noticing that the values { g ( z k ) } ; = l  consistent with (2.6) form a closed 
and convex domain 9 in the real Euclidean space R". Let us take first a point inside this 
domain, having the coordinates g ( t k ) ( j ) ,  k = 1,. . . , n. This means that one can find at 
least one analytic function which takes at the points z k  the prescribed values g ( z k ) ( i )  

and satisfies the inequality (2.6). Therefore if one calculates the L" norm, i.e. the 
essential supremum with respect to 8 E [-T, 7r] of the left-hand side of (2.6), for a fixed g 
and then takes the infimum of the numbers thus obtained with respect to all the 
functions g analytic in Iz/ < 1, having the values g ( z k )  equal to g ( z k ) ( i ) ,  the result will be 
surely less than one. On the other hand, if a point with coordinates g ( Z k ) ( e )  is outside 9, 
the L" norm of the function appearing in (2.6) will be strictly greater than one for all the 
analytic functions g assuming at z k  the given values g ( Z k ) ( e ) .  If one takes again the 
infimum of all such L" norms and takes into account the fact that it is effectively 
achieved by some analytic function g (Adamyan et a1 1968, Duren 1970), one will 
obtain also a number strictly greater than one. From the above arguments, it follows 
that the domain 9 of the admissible values g ( z k )  is exactly described by the inequality 

p ( z k  ) =given 

which is saturated, as follows from convexity arguments, if the point {g(zk)}[=1 belongs 
to the frontier of 9. 

of class H" (Duren 1970), i.e. bounded in IzI 6 1. Actually, this restriction did not 
appear in our previous discussion; however, since the last term appearing in (2.8) is by 
construction bounded on the boundary of the unit disc, it is enough to consider in the 

In the above relation we have restricted the minimisation to the analytic functions 
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minimisation process only functions s' bounded in It 1s 1, the L" norm being otherwise 
infinite and hence of no interest to us. 

We were thus led to an L" norm minimisation ir, the H" Banach space, with 
constraints at interior points (Krein and Nudelman 1973, Adamyan et a1 1968, Duren 
1970). We shall treat it by applying the standard duality theorem for minimum norm 
problems (Duren 1970). In the next section a convenient approximate description of 
the solution will be given. 

As the points { z k } ; - 1  were assumed for simplicity to be real and distinct, we can 
write g ( z )  as 

(2.9) 

In this relation the functions B k ( Z )  are products of Blaschke factors defined recurrently 
as 

(2.10) 

and the coefficients Ak are determined in terms of g ( z k )  from the triangular system of 
equations 

(2.11) 

The function h ( 2 )  is an analytic function, arbitrary in H", since the constraints upon 
g ( z )  are automatically fulfilled by the expression (2.9). Writing the inequality (2.8) in 
terms of h, we obtain 

using the property that the Blaschke factors (2.10) have modulus equal to one on the 
boundary. We now apply the duality theorem (Duren 1970) relating a minimum norm 
problem in H" to a supremum problem in the unit sphere S' of the Hardy Banach space 
H' .  The relation (2.12) is therefore equivalent to 

where we have denoted by llfl/l the L' norm of F on the boundary. The integral 
appearing in (2.13) can be computed exactly by applying the residue theorem. By 
taking into account the poles produced by the Blaschke factors, one finds that the first 
term is equal to 

If one now permutes the sums upon k and j ,  i.e. X:=l Erzk = Z;=, EL=,, and recalls the 
equations (2.11), one obtains finally the contribution of the first term in (2.13) in the 
form 

(2.14) 
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For the evaluation of the second term in the integral (2.13) we apply again the residue 
theorem, taking into account the fact that the integrand now has a cut along the segment 
[xo, 11. First we write this term as 

where the sum contains the contribution of the poles zk situated below the threshold xo, 
while C is a contour around the real segment [xo, 11. The explicit evaluation of this 
contour integral gives 

1 

(2.16) 

By using the identity 

and applying again the residue theorem for the poles of the Blaschke factors situated 
inside the contour C (i.e. for zk > xo), one writes (2.16) in the form 

If the relations (2.14), (2.15) and (2.17) are introduced in (2.13) and the equalities (2.7) 
and (2.7’) are taken into account, it may be seen that the intermediate values g ( t k )  as 
well as the arbitrary function p (x) for x > 1 disappear from the result, which is expressed 
only in terms of the input values f(Zk), k = 1, . . . , n, p(x) for x 0 c x  s 1 and r ( 8 )  
(contained in S(z)),  as 

+ c  
llFlli~1 

(2.18) 

We remark that the same result would be obtained if one started with a more general 
decomposition o f f  in two terms than that given in (2.4). For instance, if one writes 
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where q ( z )  is analytic without zeros in It/ < 1 and repeats the above calculations, one 
finds that q ( z )  does not appear in the final result (2.18). For the evaluation of the 
supremum (2.18) it is useful to apply a factorisation theorem (Duren 1970), which 
expresses every function F ( z )  from the unit sphere of H 1  as a product of two functions 
from the unit sphere of the Hilbert space H 2 .  In particular, let us start from the 
canonical factorisation (Duren 1970) of F ( z ) ,  writing it as 

F ( 2 )  = F(i ) (2)F(01(2)  (2.19) 

where F“) and F“) are the inner and outer factors of F respectively (Duren 1970). Let 
us define further 

w ( 2 )  = [F(o)(z)]i’2, G ( t )  = F(i’(2)[F(0)(z)]1’2. (2.20) 

It may be easily verified that both w and G are functions from the unit sphere of H 2  
( w ( t )  is actually an outer function) and 

F ( z )  = w(z)G(z).  (2.21) 

Using this factorisation in (2.18), one obtains 

(2.22) 

where for simplicity we have written in a compact form the contribution of the points 
z k  < xo and z k  > xo, the notation Re f ( t k )  being in the first case redundant, since the 
values f(Zk), for z k  < xo, are real. 

Using the expansions 
m m 

w ( 2 )  = w,z’, G ( z ) =  c G,z’, 
/ = 0  I =o 

the supremum (2.22) can be written in the form 

where H is an infinite Hankel matrix defined as 

Hij = ~ . - ( ~ + ~ - l 1 ,  

in terms of the real numbers 

i, j = 1, 2, . . . , 

(2.23) 

(2.24) 

(2.25) 

which are actually the negative-frequency Fourier coefficients of the function multiply- 
ing F ( z )  in the integral (2.13). 

The relation (2.24) expresses the result of the problem in terms of the norm of a 
Hankel matrix. Actually, it is known that for a general infinite matrix the norm is not 
always attained in 1’ (Adamyan et al 1968). For the practical calculation of such a 
norm, it is convenient to truncate the matrix H at a finite range, by setting all the 
coefficients C - ( ~ + I )  = 0 for j >N. The norm of a finite matrix is known to be equal 
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to the square root of the greatest eigenvalue of H(N)+H(N)  and can be computed using 
standard numerical methods (for a detailed description of such a computational 
program see Caprini et a1 (1979)). It can be shown (Adamyan et a1 1968) that when 
N + CO the norms of approach the exact norm of H, i.e. the supremum (2.24). In 
this way the problem of constraining the values f ( Z k )  of the amplitude f by means of the 
initial conditions (2.1) and (2.2) is completely solved. The parameters f ( t k )  are 
contained implicitly in the norm of the matrix H, the inequality (2.24) yielding therefore 
the exact domain 9 allowed for these values. However, the above form of the solution 
is not always very convenient in practical applications. In the next section an approxi- 
mate description of 9, very suitable for practical applications, will be presented. 

3. Approximate description of the solution 

We remark that the complicated form of the solution found in the previous section was 
due to the fact that we had to treat a minimum norm problem in the Banach space H“. 
Usually such a problem is much simpler if it is formulated in a Hilbert space, such as H 2  
(Duren 1970). In order to exploit this idea, let us consider again the relation (2.22) and 
assume that the maximisation there is performed only with respect to the function 
G E H 2 ,  the outer function w being kept fixed. It is evident that, for a fixed w, one 
obtains in this way a supremum lower than the true one. Accordingly, if this new 
supremum is bounded by one, a constraint upon the values f ( Z k ) ,  weaker than the exact 
one (2.24), will be obtained. If one denotes by gW the domain of f ( Z k )  obtained in this 
way, it is clear that 9 c gW for every fixed w EH’ with IIwl12 s 1, and therefore 
9 c nw.HZ,l lwl lzZ1 aW. Moreover, since taking the supremum over w in (2.22) is 
equivalent to finding the optimal domain 9, one can see that actually 

The important point of the present approach is that for every fixed w the domains gW 
can be explicitly described in a simple form. Moreover, as we shall discuss below, with a 
convenient choice of w one expects to approximate the exact domain 9 very closely by 
gW. From (2.22) it follows that the domain aW is yielded by the inequality 

(3.2) 

where Gj are the Fourier coefficients of G ( z )  from (2.23) and the real numbers y q j + l )  

are 

(3.3) 

The supremum (3.2) is evaluated immediately by applying the Cauchy-Schwarz 
theorem, yielding the inequality 
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By introducing the expression (3.3) of Y - ( , + ~ )  in this relation and noticing that the 
infinite summation over j can be exactly performed (actually the order of integration 
and infinite summation can be interchanged, due to the smoothness properties assumed 
for ~ ( x ) ) ,  one obtains the following inequality: 

Ref (&)  Ref(fk)  w(zi)w(Zk) 
I ,  k = l  1 - 2 , Z k  s(zi)s(zk) i 

This relation yields the required explicit description of the domain of the values 
f(,?k). Stated otherwise, it represents a set of necessary conditions which must be 
satisfied by these values, for all the functions w E H 2 ,  with 1. Of course, one is 
interested in finding among these conditions the optimal one, which amounts to 
performing the additional optimisation upon w, which remained from (2.22). The 
above approach is useful in practice only if one succeeds in approximating quite closely 
the exact domain 9 by using a convenient choice of w, instead of performing the whole 
maximisation which would lead again to the complicated solution (2.24). 

Such a useful choice of w is suggested by the following remark: one can easily see 
that the domain 9,+ is yielded in an equivalent way by the inequality 

i ( Z k )  = given 

where w is, as before, a fixed function in H 2  with (Iwl12d 1. Indeed, this follows 
immediately by applying to (3.6) the same arguments as those leading from (2.8) to 
(2.22), the L" norm being now replaced by the L2 norm, and taking into account the fact 
that by duality a minimum norm problem in H 2  is related to a maximisation in the unit 
sphere of H 2 .  Since the L2 norm weighted by a function w with ~ ~ w ~ ~ 2 ~  1 as in (3.6) is 
always less than the L" norm (2.8), it is again evident that BW is larger than 9 and 
contains it. On the other hand, it is known that the L" norm of an arbitrary function f 
given on the boundary of the unit disc, z = eio, is equal to the supremum of the L2 norms 
of f  computed in all the variables z'  = e'" obtained from z by a conformal mapping of 
the unit disc onto itself, z ' =  ( z  -a) / ( l  -cy*z). Let us therefore take (Caprini and Dij5 
1980) 

w(z)=(1-a2)1 '2/(1-az) ,  (3.7) 

where a is a parameter (real, for our purposes), l a J < 1 ,  such that lw18)I2= 
(1 - c y 2 ) / ( 1  + c y 2 -  2cy cos 0) is the Jacobian of the above conformal mapping from z to 
z ' .  By using (3.7) in the inequality (3.5), with cy variable in the range (-1, l ) ,  which is 
equivalent to solving the L2 norm minimisation for an arbitrary deformation of the 
frontier of the unit disc, one expects to obtain a zood approximation, from outside, of 
the exact domain 9. Since the domains 9JW are explicitly given by the simple expression 
(3.7), this procedure of approximating 9 is very economical and convenient for 
practical applications. 
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